編集履歴一覧に戻る
rilyのアイコン画像

rily が 2025年12月28日16時52分37秒 に編集

コメント無し

本文の変更

==角度計算には弧度法を用いています。もし電卓が度数法の場合は弧度法に変更するか、πを180に置き換えるなどして下さい。== 抵抗負荷Roにおける平滑コンデンサC = ![全波整流回路(抵抗負荷)](https://camo.elchika.com/db3b7208d290b601a4915ea1ec364289ed723af3/687474703a2f2f73746f726167652e676f6f676c65617069732e636f6d2f656c6368696b612f76312f757365722f30623534623438322d646237382d346232382d386239642d6535323233303737643033612f34343230326431652d393666612d343262382d626635612d363363646334393437353135/) $${C=-\frac{\frac{\pi}{2}+sin^{-1}(\frac{Vout_{min}}{V_{out_{max}}})}{2{\pi}fR_o{\times}ln(\frac{V_{out_{min}}}{V_{out_{max}}})}}$$ ただし $${\frac{V_{out_{min}}}{V_{out_{max}}}=\eta}$$ とすると $${C=-\frac{\frac{\pi}{2}+sin^{-1}(\eta)}{2{\pi}fR_o{\times}ln(\eta)}}$$ 半波整流回路は、全波整流より波の間隔がさらにπ空くので $${C=-\frac{\pi+\frac{\pi}{2}+sin^{-1}(\eta)}{2{\pi}fR_o{\times}ln(\eta)}=-\frac{\frac{3\pi}{2}+sin^{-1}(\eta)}{2{\pi}fR_o{\times}ln(\eta)}}$$ 合ってるかは分からないけど... 導出 - まずRC並列回路の放電時の電圧は、初期の最大電圧をVmとして $${V_C=V_{m}e^{-\frac{t}{RC}}}$$ よりtは $${t=-RC{\times}ln(\frac{V_C}{V_m})}$$ ただし、全波整流回路の放電が開始される際の角度はπ/2なので $${t-\frac{\pi}{2\omega}=-RC{\times}ln(\frac{V_C}{V_m})\space\space\cdot\cdot\cdot A}$$ また、正弦波交流の電圧瞬時式は $${V=V_m{\times}sin(\omega t)}$$ コンデンサが再充電される際は、角度がπ以上であるため $${V_C=V_m{\times}sin(\omega t - \pi)}$$ より再充電が開始される時間tは $${t=\frac{1}{\omega}(sin^{-1}(\frac{V_C}{V_m})+\pi) \cdot\cdot\cdot B}$$ B式をA式へ代入し $${\frac{\pi}{2}+sin^{-1}(\frac{V_C}{V_m})=-\omega RC \times ln(\frac{V_C}{V_m})}$$ Cの式へ整理しVC=Voutmin,Vm=Voutmaxに変換してやると $${C=-\frac{\frac{\pi}{2}+sin^{-1}(\frac{Vout_{min}}{V_{out_{max}}})}{2{\pi}fR_o{\times}ln(\frac{V_{out_{min}}}{V_{out_{max}}})}}$$ 定電流負荷の場合 = ![全波整流回路(定電流負荷)](https://camo.elchika.com/cc268fc38eaed7ad1beb3cd36c3c7e61d9fe844c/687474703a2f2f73746f726167652e676f6f676c65617069732e636f6d2f656c6368696b612f76312f757365722f30623534623438322d646237382d346232382d386239642d6535323233303737643033612f30613665633561312d646166632d343066302d393061342d663938386333666265306537/) $${C=\frac{\frac{\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2\pi f(V_{out_{max}}-V_{out_{min}})}I_{out}}$$ 導出 - $${V_C=\frac{1}{C}\int idt}$$ よりiはコンデンサ自身から発生しているので負になります。つまり $${V_C=-\frac{i}{C}t+K}$$ 放電開始時t=π/(2ω)とおき、そのときVCはVmなので $${K=V_m+\frac{\pi i}{2\omega C}}$$ より $${V_C=V_m-\frac{i}{C}(t-\frac{\pi}{2\omega})}$$ より $${t-\frac{\pi}{2\omega}=\frac{C(V_m-V_C)}{i}}$$ この式に前述のB式を代入し $${\frac{\pi}{2}+sin^{-1}(\frac{V_C}{V_m})=\frac{\omega C(V_m-V_C)}{i}}$$ Cの式へ整理しVC=Voutmin,Vm=Voutmax,i=Ioutに変換してやると $${C=\frac{\frac{\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2\pi f(V_{out_{max}}-V_{out_{min}})}I_{out}}$$ 半波整流回路の場合は $${C=\frac{\frac{3\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2\pi f(V_{out_{max}}-V_{out_{min}})}I_{out}}$$ 計算式まとめ = 抵抗負荷Roの場合 - 全波整流

-

$${C=-\frac{\frac{\pi}{2}+sin^{-1}(\frac{Vout_{min}}{V_{out_{max}}})}{2{\pi}fR_o{\times}ln(\frac{V_{out_{min}}}{V_{out_{max}}})}}$$

+

$${C=-\frac{\frac{\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2{\pi}fR_o{\times}ln(\frac{V_{out_{min}}}{V_{out_{max}}})}}$$

半波整流

-

$${C=-\frac{\frac{3\pi}{2}+sin^{-1}(\frac{Vout_{min}}{V_{out_{max}}})}{2{\pi}fR_o{\times}ln(\frac{V_{out_{min}}}{V_{out_{max}}})}}$$

+

$${C=-\frac{\frac{3\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2{\pi}fR_o{\times}ln(\frac{V_{out_{min}}}{V_{out_{max}}})}}$$

定電流負荷Ioutの場合 - 全波整流 $${C=\frac{\frac{\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2\pi f(V_{out_{max}}-V_{out_{min}})}I_{out}}$$ 半波整流 $${C=\frac{\frac{3\pi}{2}+sin^{-1}(\frac{V_{out_{min}}}{V_{out_{max}}})}{2\pi f(V_{out_{max}}-V_{out_{min}})}I_{out}}$$